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• Odd-Even Merge Sort

• Sorting Circuit

• Preparata’s Algorithm



0-1 Lemma

If a comparison-exchange algorithm sorts 
input sets consisting solely of 0’s and 1’s, 
then it sorts all input sets of arbitrary 
values



Odd-Even Merge Sort (1/9)
• Works by recursively merging lager and larger sorted list
• Firstly, we sort N/2 pairs and form N/2 lists of length 2. Then, these 

lists are merged to form N/4 lists of length 4, etc. 
• Merging

We have two lists of length M = 2k :

A= a0 , a1 ,. . . , aM-1 and  B= b0 , b1 ,. . . , bM-1                   

We partition them into odd and even index sublists:

even(A)= a0 , a2 ,. . . , aM-2   and  odd(A)= a1 , a3. . . , aM-1 ,

even(B)= b0 , b2 ,. . . , bM-2   and  odd(B)= b1 , b3. . . , bM-1



Odd-Even Merge Sort (2/9)
• Because A,B are sorted, so are the odd and even 

sublists
• We use recursion to merge even(A) with odd(B) to form 

C, and odd(A) with even(B) to form D.

• Let C= c0 , c1 ,. . . , cM-1 and  D= d0 , d1 ,. . . , dM-1

• To merge them we interleave them to form
L’= c0 d0,  c1 d1,. . . , cM-1 dM-1 

• To sort this list we only have to compare each ci with its 
following di



Odd-Even Merge Sort (3/9)
• For example:

A= 2,3,4,8    and   B= 1,5,6,7
Then,
even(A)=2,4   and    odd(B)= 5,7            C=2,4,5,7
odd(A)=3,8     and    even(B)=1,6           D=1,3,6,8

so we have:   L’=2,1,  4,3,  5,6,  7,8

L=1,2,  3,4,  5,6,  7,8



Odd-Even Merge Sort (4/9)
• Why does it work?
• Let A have  ‘a’ zeros  and ‘M-a’ ones and B have ‘b’ zeros and ‘M-b’

ones.

• Then even(A) has ceil(a/2) zeros and odd(A) has  floor(a/2) zeros. 
The same for even(B) and odd(B).

• This means that C has c = ceil(a/2) + floor(b/2)  zeros and D has         
d = floor(a/2) + ceil(b/2) zeros. So C and D differ by at most one.

• If c=d or c=d+1         c+d

L=L’=0,0,…..,0,1,1,…,1    and we are done 
• Else if  c=d-1            2c

L’=0,0,……,0,1,0,1,1,…,1



Odd-Even Merge Sort (5/9)
• Implementation on a butterfly. First step:
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Odd-Even Merge Sort (6/9)
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Odd-Even Merge Sort (7/9)
• Location after recursion:
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Odd-Even Merge Sort (8/9)
• Last step:
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Odd-Even Merge Sort (9/9)
• The procedure to sort 2 lists of length M/2 each requires 

2logM steps.
• As we have already said, we merge larger and larger 

lists. At the beginning we merge lists of length 1, then 
lists of length 2, then lists of length 4, etc, until we merge 
two lists of length N/2. Thus, the total complexity is:

2log2 + 2log4 + 2log8 + ….+2logN =  logN(1 + logN)



Example (1/2)
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Example (2/2)
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Sorting Circuit (1/4)

• If we take a closer look to the procedure of 
merging two lists, we observe that after the first 
logM steps, the first m/2 values remain in the 
same level, while the rest go to level 3M/2-i.

• This means that we can build a Sorting Circuit, 
in which we can avoid the first logM steps. 
Consequently, we have the following known 
Circuit, with depth logN(logN + 1)/2:



Sorting Circuit (2/4)

• Merger of two sorted lists:



Sorting Circuit (3/4)

• Sorter:



Sorting Circuit (4/4)

The last merge stage requires depth logN, because the 
first register is compared with the n/2-th register, then 
with the N/4-th register,etc. The merge stage before the 
last requires depth log(N/2), because there are two pairs 
of lists to be merged in parallel. Thus the total Circuit 
requires:
logN + log(N/2) + log(N/4) + … + log2= logN(logN + 1)/2



Preparata’s Algorithm

• Sorts M elements using N processors, for 
any M ≤ N/4.

• Requires O(logM logN / (log(N/M))) steps
• If M ≤ N^(1-ε) for some constant ε>0,the 

algorithm runs in O(logM) steps, which is 
optimal.



Preparata’s Algorithm (1/9)
• The key for this algorithm is a procedure for merging s 

lists of size r in O(logrs) steps in a hypercube with 2rs2 

nodes.
• In the merging procedure we merge every list with 

another. So we will be able to compute the rank of each 
item within each list. Then, by summing these partial 
ranks, we are able to compute the overall rank of each 
item.



Preparata’s Algorithm (2/9)
• The procedure consists of 9 phases.

• The  a-th item of the b-th list, xba,is located in node:                 
y logs bits      logr bits        logs bits       1bit

bin(b-1)|bin(a-1)|0……0|0
• We define Hbk to be the 2r- node subhypercube with 

nodes:        logs bits      logr bits      logs bits      1bit

bin(b-1)|*…..*|bin(k-1)|*
with Hbk (1) :bin(b-1)|*…..*|bin(k-1)|1
and Hbk (0) :bin(b-1)|*…..*|bin(k-1)|0



Preparata’s Algorithm (3/9)
• Phase 1: The b-th list is replicated and stored in Hbk (0)  

for 1≤ k ≤ s. In other words xba is copied in all nodes of 
the form     

bin(b-1)|bin(a-1)|bin(k-1)|0   , for all k

• This can be accomplished in logs steps. In each step, 
every node which receives xba sends it to a neighbour of 
his. After t steps the value will have been copied into all 
nodes of the form

t              logs - t

bin(b-1)|bin(a-1)|*…..*0…..0|0



Preparata’s Algorithm (4/9)
• Phase 2: The list contained in Hbb (0) is copied into        Hbb(1)  for all 

1≤ b≤ s.

• Phase 3: The k-th list is copied into Hbk(1) for all 1≤ b≤ s. After this 
phase subhypercube Hbk contains the b-th and k-th lists in sorted 
order.

• Phase 4: These lists are merged with Odd-Even Merge Algorithm. 

• Phase 5: For each xba we compute the number of elements, which 
are smaller in the k-th list for all a,b,k. This is denoted by yk(xba) and 
can be done with parallel prefix computation. 



Preparata’s Algorithm (5/9)
• Phase 6: We route the value yk(xba) to node: 

bin(b-1)|bin(a-1)|bin(k-1)|0  in Hbk

• Phase 7: We compute the total rank of the value by 
adding all yk(xba): 

zba = y1(xba) + y2(xba) + …+ yk(xba) 
All the values needed for xba are contained in 
subhypercube bin(b-1)|bin(a-1)|*…*|0. So all we have to 
do is to add all these values. 

The addition is done so that the rank of xba as well as the 
value itself are contained in bin(b-1)|bin(a-1)|bin(b-1)|0 .



Preparata’s Algorithm (6/9)

It remains only to route the values to the correct 
positions. This is done in the last two phases:

• Phase 8: We send value xba from
bin(b-1)|bin(a-1)|bin(b-1)|0 

to
logrs bits

bin(zba-1)|bin(b-1)|0

• Phase 9: We send value xba to bin(zba-1)|0….0|0



Preparata’s Algorithm (6/9)
• This procedure requires O(logrs) steps.

• If M ≤ sqrt(N/2), the the sorting can be accomplished 
with a single run of the previous procedure with r=1 and 
s=M. Then the algorithm requires  O(logrs)=O(logM)

• If M > sqrt(N/2) we will use the procedure more than 
once.



Preparata’s Algorithm (7/9)
• We input the a-th item (1≤ a ≤M) to node 

logM bits logs bits

bin(a-1)|0….0|0 where s=N/2M

• Phase 1: We partition the M items into M/s groups of s 
items each. Each item is treated like a list of length 1, so 
we use the previous procedure in each such group. We 
run the procedure in each subhypercube of the form:

logs         logs

bin(w-1)|*….*|*…..*|* 



Preparata’s Algorithm (8/9)
After the first phase we are left with M/s sorted lists of lenth

s. These lists are stored in nodes of the form 
logM logs

*……*|0…..0|0
• Phase 2: We partition the M/s lists into M/s^2 groups of s 

lists each and run the merge procedure with r=s. This 
can be accomplished by running the procedure in 
subhypercube of the form

logs^2      logs

bin(w-1)|*….*|*…..*|* 



Preparata’s Algorithm (9/9)
• We continue in this fashion. During the i-th phase we 

partition the M/s(i-1) lists of length s(i-1) into M/si groups of 
s lists each. The i-th phase takes                            
O(logrs) = O(logsi) = O(logN) steps.

• The total number of phases is O(logM/ (log(N/M)

• The items will be sorted after a total
O(logM logN / (log(N/M)))  steps
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