
Sorting οn hypercubic
networks

Παράλληλοι Αλγόριθμοι

Α.Τέντες

• Odd-Even Merge Sort

• Sorting Circuit

• Preparata’s Algorithm

0-1 Lemma

If a comparison-exchange algorithm sorts
input sets consisting solely of 0’s and 1’s,
then it sorts all input sets of arbitrary
values

Odd-Even Merge Sort (1/9)
• Works by recursively merging lager and larger sorted list
• Firstly, we sort N/2 pairs and form N/2 lists of length 2. Then, these

lists are merged to form N/4 lists of length 4, etc.
• Merging

We have two lists of length M = 2k :

A= a0 , a1 ,. . . , aM-1 and B= b0 , b1 ,. . . , bM-1

We partition them into odd and even index sublists:

even(A)= a0 , a2 ,. . . , aM-2 and odd(A)= a1 , a3. . . , aM-1 ,

even(B)= b0 , b2 ,. . . , bM-2 and odd(B)= b1 , b3. . . , bM-1

Odd-Even Merge Sort (2/9)
• Because A,B are sorted, so are the odd and even

sublists
• We use recursion to merge even(A) with odd(B) to form

C, and odd(A) with even(B) to form D.

• Let C= c0 , c1 ,. . . , cM-1 and D= d0 , d1 ,. . . , dM-1

• To merge them we interleave them to form
L’= c0 d0, c1 d1,. . . , cM-1 dM-1

• To sort this list we only have to compare each ci with its
following di

Odd-Even Merge Sort (3/9)
• For example:

A= 2,3,4,8 and B= 1,5,6,7
Then,
even(A)=2,4 and odd(B)= 5,7 C=2,4,5,7
odd(A)=3,8 and even(B)=1,6 D=1,3,6,8

so we have: L’=2,1, 4,3, 5,6, 7,8

L=1,2, 3,4, 5,6, 7,8

Odd-Even Merge Sort (4/9)
• Why does it work?
• Let A have ‘a’ zeros and ‘M-a’ ones and B have ‘b’ zeros and ‘M-b’

ones.

• Then even(A) has ceil(a/2) zeros and odd(A) has floor(a/2) zeros.
The same for even(B) and odd(B).

• This means that C has c = ceil(a/2) + floor(b/2) zeros and D has
d = floor(a/2) + ceil(b/2) zeros. So C and D differ by at most one.

• If c=d or c=d+1 c+d

L=L’=0,0,…..,0,1,1,…,1 and we are done
• Else if c=d-1 2c

L’=0,0,……,0,1,0,1,1,…,1

Odd-Even Merge Sort (5/9)
• Implementation on a butterfly. First step:

b3b3

b2b2

b2b2

b3b3

b1b1

b0b0

b0b0

b1b1

a3a3

a2a2

a0a0

a3a3

a2a2

a1a1 a1a1

a0a0

Odd-Even Merge Sort (6/9)

a

b3b3

b1b1

a2a2

a0a0

Odd-Even Merge Sort (7/9)
• Location after recursion:

d3d3

c3c3

d2d2

c2c2

d1d1

c1c1

d0d0

c0c0

Odd-Even Merge Sort (8/9)
• Last step:

min(c0,d0)
max(c0,d0)

min(c1,d1)
max(c1,d1)

min(c2,d2)
max(c2,d2)

min(c3,d3)
max(c3,d3)

L7L7

L6L6

d3d3

c3c3

L5L5

L4L4

d2d2

c2c2

L3L3

L2L2

LoLo

d1d1

c1c1

L1L1 d0d0

c0c0

Odd-Even Merge Sort (9/9)
• The procedure to sort 2 lists of length M/2 each requires

2logM steps.
• As we have already said, we merge larger and larger

lists. At the beginning we merge lists of length 1, then
lists of length 2, then lists of length 4, etc, until we merge
two lists of length N/2. Thus, the total complexity is:

2log2 + 2log4 + 2log8 + ….+2logN = logN(1 + logN)

Example (1/2)
a

77

66

66

77

55

11

11

55

11

55

66

77

88

44

22

88

44

33 33

22

88

44

33

22

11

55

66

77

88

44

33

22

Example (2/2)
s

88

77

88

77

66

55

66

55

88

55

66

77

44

33

11

33

44

22 11

22

11

44

33

22

11

55

66

77

88

44

33

22

Sorting Circuit (1/4)

• If we take a closer look to the procedure of
merging two lists, we observe that after the first
logM steps, the first m/2 values remain in the
same level, while the rest go to level 3M/2-i.

• This means that we can build a Sorting Circuit,
in which we can avoid the first logM steps.
Consequently, we have the following known
Circuit, with depth logN(logN + 1)/2:

Sorting Circuit (2/4)

• Merger of two sorted lists:

Sorting Circuit (3/4)

• Sorter:

Sorting Circuit (4/4)

The last merge stage requires depth logN, because the
first register is compared with the n/2-th register, then
with the N/4-th register,etc. The merge stage before the
last requires depth log(N/2), because there are two pairs
of lists to be merged in parallel. Thus the total Circuit
requires:
logN + log(N/2) + log(N/4) + … + log2= logN(logN + 1)/2

Preparata’s Algorithm

• Sorts M elements using N processors, for
any M ≤ N/4.

• Requires O(logM logN / (log(N/M))) steps
• If M ≤ N^(1-ε) for some constant ε>0,the

algorithm runs in O(logM) steps, which is
optimal.

Preparata’s Algorithm (1/9)
• The key for this algorithm is a procedure for merging s

lists of size r in O(logrs) steps in a hypercube with 2rs2

nodes.
• In the merging procedure we merge every list with

another. So we will be able to compute the rank of each
item within each list. Then, by summing these partial
ranks, we are able to compute the overall rank of each
item.

Preparata’s Algorithm (2/9)
• The procedure consists of 9 phases.

• The a-th item of the b-th list, xba,is located in node:
y logs bits logr bits logs bits 1bit

bin(b-1)|bin(a-1)|0……0|0
• We define Hbk to be the 2r- node subhypercube with

nodes: logs bits logr bits logs bits 1bit

bin(b-1)|*…..*|bin(k-1)|*
with Hbk (1) :bin(b-1)|*…..*|bin(k-1)|1
and Hbk (0) :bin(b-1)|*…..*|bin(k-1)|0

Preparata’s Algorithm (3/9)
• Phase 1: The b-th list is replicated and stored in Hbk (0)

for 1≤ k ≤ s. In other words xba is copied in all nodes of
the form

bin(b-1)|bin(a-1)|bin(k-1)|0 , for all k

• This can be accomplished in logs steps. In each step,
every node which receives xba sends it to a neighbour of
his. After t steps the value will have been copied into all
nodes of the form

t logs - t

bin(b-1)|bin(a-1)|*…..*0…..0|0

Preparata’s Algorithm (4/9)
• Phase 2: The list contained in Hbb (0) is copied into Hbb(1) for all

1≤ b≤ s.

• Phase 3: The k-th list is copied into Hbk(1) for all 1≤ b≤ s. After this
phase subhypercube Hbk contains the b-th and k-th lists in sorted
order.

• Phase 4: These lists are merged with Odd-Even Merge Algorithm.

• Phase 5: For each xba we compute the number of elements, which
are smaller in the k-th list for all a,b,k. This is denoted by yk(xba) and
can be done with parallel prefix computation.

Preparata’s Algorithm (5/9)
• Phase 6: We route the value yk(xba) to node:

bin(b-1)|bin(a-1)|bin(k-1)|0 in Hbk

• Phase 7: We compute the total rank of the value by
adding all yk(xba):

zba = y1(xba) + y2(xba) + …+ yk(xba)
All the values needed for xba are contained in
subhypercube bin(b-1)|bin(a-1)|*…*|0. So all we have to
do is to add all these values.

The addition is done so that the rank of xba as well as the
value itself are contained in bin(b-1)|bin(a-1)|bin(b-1)|0 .

Preparata’s Algorithm (6/9)

It remains only to route the values to the correct
positions. This is done in the last two phases:

• Phase 8: We send value xba from
bin(b-1)|bin(a-1)|bin(b-1)|0

to
logrs bits

bin(zba-1)|bin(b-1)|0

• Phase 9: We send value xba to bin(zba-1)|0….0|0

Preparata’s Algorithm (6/9)
• This procedure requires O(logrs) steps.

• If M ≤ sqrt(N/2), the the sorting can be accomplished
with a single run of the previous procedure with r=1 and
s=M. Then the algorithm requires O(logrs)=O(logM)

• If M > sqrt(N/2) we will use the procedure more than
once.

Preparata’s Algorithm (7/9)
• We input the a-th item (1≤ a ≤M) to node

logM bits logs bits

bin(a-1)|0….0|0 where s=N/2M

• Phase 1: We partition the M items into M/s groups of s
items each. Each item is treated like a list of length 1, so
we use the previous procedure in each such group. We
run the procedure in each subhypercube of the form:

logs logs

bin(w-1)|*….*|*…..*|*

Preparata’s Algorithm (8/9)
After the first phase we are left with M/s sorted lists of lenth

s. These lists are stored in nodes of the form
logM logs

……|0…..0|0
• Phase 2: We partition the M/s lists into M/s^2 groups of s

lists each and run the merge procedure with r=s. This
can be accomplished by running the procedure in
subhypercube of the form

logs^2 logs

bin(w-1)|*….*|*…..*|*

Preparata’s Algorithm (9/9)
• We continue in this fashion. During the i-th phase we

partition the M/s(i-1) lists of length s(i-1) into M/si groups of
s lists each. The i-th phase takes
O(logrs) = O(logsi) = O(logN) steps.

• The total number of phases is O(logM/ (log(N/M)

• The items will be sorted after a total
O(logM logN / (log(N/M))) steps

	Sorting οn hypercubic networks
	0-1 Lemma
	Odd-Even Merge Sort (1/9)
	Odd-Even Merge Sort (2/9)
	Odd-Even Merge Sort (3/9)
	Odd-Even Merge Sort (4/9)
	Odd-Even Merge Sort (5/9)
	Odd-Even Merge Sort (6/9)
	Odd-Even Merge Sort (7/9)
	Odd-Even Merge Sort (8/9)
	Odd-Even Merge Sort (9/9)
	Example (1/2)
	Example (2/2)
	Sorting Circuit (1/4)
	Sorting Circuit (2/4)
	Sorting Circuit (3/4)
	Sorting Circuit (4/4)
	Preparata’s Algorithm
	Preparata’s Algorithm (1/9)
	Preparata’s Algorithm (2/9)
	Preparata’s Algorithm (3/9)
	Preparata’s Algorithm (4/9)
	Preparata’s Algorithm (5/9)
	Preparata’s Algorithm (6/9)
	Preparata’s Algorithm (6/9)
	Preparata’s Algorithm (7/9)
	Preparata’s Algorithm (8/9)
	Preparata’s Algorithm (9/9)

